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Abstract Bone provides mechanical support, and flexibility to the body as a structural frame work along with mineral

storage, homeostasis, and blood pH regulation. The repair and/or replacement of injured or defective bone with healthy

bone or bone substitute is a critical problem in orthopedic treatment. Recent advances in tissue engineering have shown

promising results in developing bone material capable of substituting the conventional autogenic or allogenic bone

transplants. In the present review, we have discussed natural and synthetic scaffold materials such as metal and metal

alloys, ceramics, polymers, etc. which are widely being used along with their cellular counterparts such as stem cells in

bone tissue engineering with their pros and cons.
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1 Introduction

Bone is a complex living connective tissue that provides

structural frame work, mechanical support, and flexibility

to the body along with mineral storage, homeostasis and

blood pH regulation [1]. Bone structure typically comprises

of cortical and cancellous bone [2] (Fig. 1). The unique

organic and inorganic material constitution imparts its

mechanical properties to the bone.

Bone defects and their repair is the most common

problem worldwide [3] gaining bone as a second most

transplanted tissue status followed by blood [4, 5]. In U.S.

alone, more than 6.5 million bone defects [6] and more

than 3 million facial injuries [7] are recorded every year.

Annually, more than 2.2 million bone graft procedures are

performed worldwide [8]. Tumor resection, congenital

malformation, trauma, fractures, surgery, or diseases like

osteoporosis, arthritis [8, 9] are the major cause of bone

defects. Some clinical conditions like skeletal reconstruc-

tion of large bone defects or compromised regenerative

processes such as avascular necrosis, atrophic non-unions

and osteoporosis [10] also require bone related transplants.

The repair or replacements of such damaged or traumatized

bone tissue is achieved by standard approaches like dis-

traction osteogenesis, bone transport [9] or different bone

grafting methods like autografts, allografts, bone graft

substitutes or by using growth factors [9]. The first com-

mercial bone graft material was introduced in 1993 as

Interpore’s coral derived Pro-Osteon� [11]. Autografts

have achieved various degrees of success in treating bone

defects. However, the donor site morbidity, prolonged

rehabilitation, increased risk of deep infection and restric-

ted availability limits its potential applications [12]. Bone

allografts have resolved transplantable bone samples limi-

tations to some extents, but with potential risks of
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transmissible diseases, viral infection, immunological

rejections, efficacy and cost effectiveness [13–15]. Due to

avascular and porous nature of bone, osteocytes survive by

diffusion of nutrients limits their application in case of

bone defect size and host viability [16]. Furthermore, there

are no heterologous or synthetic bone substitutes available

at present which are superior or with similar biological or

mechanical properties as of natural bone. Hence, an alter-

native and effective treatment method for bone regenera-

tion is a necessity.

Recent bone substitute which can replace conventional

bone grafts have shown a ray of hope [17]. Use of osteo-

genic growth factors like bone morphogenic proteins

(BMPs), osteoinductive matrix, gene therapy, use of stem

cells etc. [18] have demonstrated their potential in bone

tissue engineering (Fig. 2). This review is an effort to

summarize the different types of available scaffolds and/or

biomaterials, stem cells and growth factors used for bone

regeneration, either alone or in combination.

2 Cellular aspect of bone tissue engineering

Bone homeostasisis maintained by osteoblasts, osteocytes,

and osteoclasts. Osteoblasts are originated from mes-

enchymal cells, while osteocytes are mature osteoblasts

and osteoclasts are of hematopoietic origin [19]. Among all

available cell sources viz. autogenic cells, allogenic cells,

embryonic stem cells (ESCs) [20], induced pluripotent

stem cells (iPSCs) [21], or mesenchymal stem cells

(MSCs) [22]; ESCs are widely studied for bone tissue

engineering including differentiation into osteoblasts

[20, 23]. Co-culturing of ESCs with fetal fibroblast has

showed enhanced formation of bone nodules [24]. How-

ever, teratoma formation limits ESCs clinical applications

[21]. For example, transplantation of laminin coated 3D

poly (L-lactide-co-glycolide) (PLGA) scaffolds with human

ESCs into liver lobules of SCID mice resulted in teratoma

formation [25].

MSCs are known to differentiate into maturated cells like

osteoblasts, chondroblasts and chondrocytes on external

chemical stimuli [26].MSCs isolated frombonemarrow [22],

peripheral blood [27], adipose tissue [28] have been differ-

entiated to osteoblasts, chondrocytes and healed critical sized

bone defects in vivo. The study involving proliferative and

osteogenic potential ofMSCs from human fetal bone marrow

(hfBMSCs), human adult adipose tissue (hADSCs) cultured

in to poly(caprolactone) (PCL)-tricalcium phosphate (TCP)

scaffolds revealed hfBMSCs possesses highest proliferation

and osteogenesis with least immunogenicity [29]. The iPSCs

have emerged as an alternative for MSCs and/or ESCs. There

are reports available of differentiation of human iPSCs in to

osteoblasts in vitro [30] and in vivo without teratoma for-

mation [21, 31]. Murine iPSCs transduced with Special

Adenosine-Thymine rich sequence binding protein 2

(SATB2) are known to express the osteoblastic genes [32].

Murine iPSCs overexpressing SATB2 seeded with silk scaf-

folds [32] and human iPSCs seeded with PCL scaffolds [33]

transplanted in to mice model, showed increased mineral-

ization and new bone formation.

Although BMSCs are gold standard in tissue engineering,

its clinical use is restricted due to invasive procedures and

decreased proliferation and differentiation with increasing age

of donor [34]. Although morphologically and phenotypically

similar to human umbilical cords, Wharton’s jelly mesenchy-

mal stem cells (hUCMSCs), human dental pulp stem cells

(hDPSCs) have demonstrated greater proliferative properties

than hBMSCs, hADSCs [35]. The study of hUCMSCs with

non-rigid calcium phosphate cement scaffold revealed prolif-

eration and differentiation of hUCMSCs into osteoblast and

Fig. 1 Hierarchical structural

organization of bone: A cortical

and cancellous bone, B osteons

with haversian systems,

C lamellae, D collagen fibre

assemblies of collagen fibris,

E bone mineral crystals,

collagen molecules, and non-

collagenous proteins.

Reproduced with permission

from Rho et al. [2], �1998
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mineralization in vitro [36]. Cell origin and lineage differen-

tiation conditions have significant effect on stem cells osteo-

genic differentiation pattern [37]. Many research groups have

considered hUCMSCs as an alternative to BMSCs showing

comparable expression of osteogenic phenotypes in vitro

[34, 35] along with in vivo osteogenic differentiation when

transplanted with scaffolds in nude mice model [38].

Human Amniotic fluid derived stem cells (hAFSCs) can

be used as alternative for BMSCs in bone tissue engineering

[37].The hAFSCs adhered to composite scaffolds of collagen

matrix derived from porcine bladder submucosa matrix—

PLGA differentiates into osteoblasts expressing osteogenic

genes [39]. The hAFSCs and hDPSCs seeded on fibroin

scaffolds [40] and on collagen scaffolds [41], support in vivo

bone formation in a critical size cranial bone defects in rats.

The hDPSCs seeded on collagen-hydroxyapatite (HA)-

poly(L-lactide-co-e-caprolactone) showed cell adhesion,

growth, expression of osteogenic genes with mineralization

and nodule formation [42]. The hDPSCs with HA-TCP paste

transplanted into immunodefecient parietal region cranial

defect rats revealed bone formation with increased miner-

alization and density of bone [43].

3 Bone tissue engineering using growth factors

Growth factors viz. Bone morphogenetic proteins (BMPs)

[18], Fibroblast growth factors (FGFs) [44], Platelet

derived growth factors (PDGFs) [45], Transforming growth

factors (TGF-b) [46], Vesicular endothelial growth factors

(VEGFs) [47], Insulin like growth factors (IGFs) [46];

alone or in combination are known to play important role in

regulation of bone formation at different level. BMP is

involved in skeletal development, adult bone homeostasis,

and fracture healing along with differentiation of MSCs in

to the cartilage, bone, tendon/ligament [18] with highest

in vitro and in vivo osteogenic potential [48]. Three

dimensional (3D) bio-printing of BMP-2 in DermaMa-

trixTM human allograft revealed differentiation of mouse

C2C12 progenitor cells in vitro and tissue formation in

calvarial defect in vivo [49]. The high doses requirement of

BMPs limits its direct use in regenerative medicine [18],

but BMPs with combinations of growth factors have been

used in bone regeneration. For example, adenovirus based

expression of BMP2 in the C3H10T1/2 cell line,

osteoblastic differentiations increased 10 fold [50]. The

BMP-2 loaded nanoparticles with fibrin scaffolds showed

more bone formation in vitro than BMP-2 alone [51]. Silica

xerogel-chitosan hybrid coated BMP-2 with porous HA

showed in vitro osteoblastic cell response and in vivo bone

formation in calvarial defects in rabbits [52]. The study

with MG-63 cells seeded on TCP scaffolds showed higher

cell seeding efficiency in vitro while alginate gel assisted

cell seeding with BMP-2 showed osteocalcin and osteoid

deposition in vivo [53].PLGA scaffold coated with BMP-2

and PDGF polyelectrolyte on transplantation in calvarial

bone defect rat model induced mechanically competent

local bone formation [54].

The osteogenic growth factor bFGF has a potential to

accelerate bone regeneration when used with MSCs [44].

Fig. 2 Outline of bone tissue

engineering: mesenchymal stem

cells from bone marrow,

umbilical cord, adipose tissue or

embryonic tissue can be used

along with growth factors on

different biomaterials to repair

or regenerate bone tissue
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Also use of bFGF with gelatin hydrogels have resulted in

improved bone regeneration in skull defects of rabbits [55]

and monkeys [56]. The mesoporous bioactive glass nano-

spheres used for the delivery of FGF2 and FGF18. Rat

MSCs culture with these growth factors showed cell pro-

liferation, cellular mineralization in vitro and their trans-

plantation into rat calvarial defects revealed bone formation

with higher bone volume and bone density [57]. The PDGF

stimulate VEGF secretion and contributes to the osteogenic

lineage and helps to formation of new bone by differentia-

tion of MSCs in presence of BMP via Wnt signaling [45]

and chitosan-TCP [58]. The combination of PDGF and IGF-

1 with aqueous gel transplanted to periodontitis affected

teeth in beagle dogs’ revealed cementum and new bone

formation [59]. The PDGF with deproteinized bovine bone

mineral showed higher bone regeneration as compared to b-
TCP in calvarial defect rabbits models [60]. The patients

with alveolar defects transplanted with PDGF, hMSCs see-

ded on biphasic scaffolds, three month post-surgery revealed

more than 50% bone repair [61]. In a clinical trial patients

with one localized periodontal osseous defect treated with

PDGF and b-TCP, 36 month follow up revealed filling of

potential bone defect [62].

When BMSCs cultured on VEGF-silk-fibroin-chitosan

scaffolds showed significant cell attachment, cell prolifer-

ation compared to BMSCs cultured on silk-fibroin-chitosan

scaffolds [63]. VEGFs incorporated PLGA scaffolds

showed proliferation of endothelial cells and apatite for-

mation revealing osteogenic and angiogenic potential [64].

Osteoblasts cultured on AD-VEGF activated chitosan-HA

showed attachment, proliferation, differentiation in vitro

and in vivo with neo-vessel formation in newly formed

ectopic bone [65]. VEGFs, when used synergistically with

BMP-4 [47]and BMP-2 [66] enhanced bone formation than

VEGFs alone (Table 1).

IGF-1 is secreted by mature osteoblasts and stimulates

in vitro and in vivo proliferation and differentiation of

osteoblasts [46]. Human periodontal ligament stem cells

treated with exogenous IGF-1 showed the in vitro osteogenic

differentiation and in vivo there was mineralization in the

tissues [67]. The IGF transplanted with MSCs in the mice

models improved the bone fractures through the callus

mineralization and autocrine osteogenic effects via IRS-1

signaling [68]. IL-3,induces BMP2 and activate Smad1/5/8,

enhancing the differentiation of MSCs in to the osteoblasts

and bone regeneration, both in vitro and in vivo [69].

4 Bone tissue engineering with scaffolds

Scaffolds are porous 3D matrices that act as temporary

templates for cell adhesion and proliferation, while pro-

viding mechanical support until formation of new tissue at

the diseased area [70]. Scaffolds can also mimic the natural

extra cellular matrix (ECM) [70] without activating host

immune response or secretion of toxic metabolites [71]. A

variety of materials such as metals [72], ceramics [73],

natural [74] and synthetic polymers and their combinations

(Table 2) have been explored for replacement and repair of

damaged or traumatized bone tissues.

The metallic materials such as Stainless steel, Co-Cr

alloys and Ti alloys etc. [72] are in use over 100 years for

bone replacements due to their mechanical properties [75].

However, these materials are corrosive and release cyto-

toxic ions [75] and often suffer from the wear and stress-

shielding effect on transplantation into the human body

[76]. Stainless steel is the most common bone implant

material because of its combination of properties like

mechanical properties, biocompatibility, corrosion resis-

tance and cost effectiveness [77]. Nickel free stainless steel

implants are recent focus of metallic bone implants [77].

Biocompatibility and osteogenesis were observed with

corrosive resistant implants made from Tantalum (Ta),

Hafnium (Hf) Niobium (Nb), Titanium (Ti), Rhenium (Re)

[78]. The properties of pure metals can be enhanced by

alloying the different types of metals. Co-Cr alloys are

wear resistant but possess corrosion properties [79]. The

coiled wire and particle form of Co-Cr alloy and Ti

implants are found to be devoid of inflammatory response

upon transplantation [80].

Ti and Ti alloys like Titanium-Aluminum (6%)-Vana-

dium (4%) alloy (Ti6Al4 V) have excellent tensile

strength, resistance to corrosion [81], lower modulus and

superior biocompatibility as compared to stainless steel, Co

based alloys [82]. Nickel-titanium alloy called Nitinol

(NiTi) possesses shape memory effect, biocompatibility,

super-plasticity, damping properties [81, 83].

Ceramics such as HA [76], bioactive glasses [84], cal-

cium phosphate [73] are widely used for bone repair. These

are similar to the inorganic component of bone and possess

chemical and structural similarity to the native bone [74].

Being natural component of bone HA is biocompatible,

biodegradable, biomimetic and bioactive in nature has been

widely used in different types of scaffolds as major or

partial component. For example, HA and its derivatives

like nano-HA, bovine derived porous HA (BDHA)

[22, 85].

Calcium Phosphate ceramics are biocompatible, safe,

cost effective, easily available and show lower morbidity

hence widely used as bone substitutes, coatings, cements,

drug delivery systems and tissue engineering scaffolds

[73]. The mechanically stable 3D printed calcium silicate

scaffolds showed in vitro mineralizationand in vivo osteo-

genesis [86]. Bio-mimetic composites of calcium phos-

phate and mixtures of chitosan, hyaluronic acid found to

have biodegradability and good biocompatibility with
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Table 1 Cells for bone tissue engineering

Cells for bone tissue

engineering

Tissue repair References

ESCs Osteoblast differentiation but Teratoma formation in SCID mice [24, 25]

BMSCs Osteoblast differentiation; osteoinduction; osteogenesis; mineralization;

in vitro & in vivo bone regeneration

[22, 29, 63, 109, 138, 147, 149, 153]

ADSCs Osteoblast differentiation [29, 35, 137]

DPSCs Mineralization; in vivo bone regeneration [40–43]

AFSCs Osteoblast differentiation; in vivo bone regeneration [39–41]

UCMSCs Osteoblast differentiation; mineralization [35, 36, 38]

iPSCs Osteoblast differentiation; mineralization; in vitro & in vivo bone regeneration [30–33]

MG63 cells Osteoblast differentiation [53]

MC3T3-E1 Osteoblast differentiation [88]

Osteoblast cells Biocompatibility; mineralization; in vivo bone regeneration [87, 94, 123, 124, 136]

Table 2 Types of scaffolds

used for bone tissue engineering
Type of scaffolds Type of study References

Metals

Lotus type porous nickel free stainless steel In vivo [76, 77]

Cobalt-Chromium (Co-Cr) & Ti alloys In vivo [72, 79, 80]

Ti6Al4 V alloy In vitro [81, 82]

Nitinol (NiTi) alloy In vitro & In vivo [81, 83]

Ceramic composites

BDHA scaffolds In vitro [22, 85]

calcium silicate scaffolds In vitro & In vivo [86]

calcium phosphate composite In vitro [87]

Bioglass 45S5 In vitro & In vivo [84, 89–91]

BCP scaffolds In vitro [94]

Bioactive glass-Strontium In vitro [88]

Polymers

Collagen composites In vitro & In vivo [74, 97–99]

Chitosan-gelatin-nano silica nanocomposite In vitro [102]

Chitosan-forsterite composite In vitro [95]

nHA-chitosan-CMC In vitro [105]

EDC treated Gelatin scaffolds In vivo [106]

PGA-PLA scaffolds In vitro [109]

PLLA-HA nanocomposites In vivo [115]

PLGA-nHA composite In vitro [119]

PDLLA-nHA-PPy-Alg scaffolds In vitro [117]

PCL, PCL-PLGA-HA, PCL-TCP-nHA In vitro [26, 99, 120, 121]

PCL-HA-CNTs; PCL-MNPs In vitro & In vivo [122, 123]

PLA, PLA-HA, PLA-HA-GO In vitro [124]

PHB, PHB-gelatin, PHB-gelatin-nHA In vitro [117]

Carbon materials

nHA ? SWCNT scaffold In vitro [128, 129]

SWCNT networks, rGO In vitro [130]

HA-GN composites In vitro [127]
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osteoblasts cells [87]. The 3D printed bioactive glass-

Strontium mesoporous scaffolds showed apatite formation

and proliferation and differentiation of MC3T3-E1 cells

in vitro [88]. Bioglass 45S5 showed good osteogenic cel-

lular activities, osteocalcin synthesis, and calcified extra-

cellular matrix production along with formation of calcified

bone nodule [84, 89], hence proposed for bone tissue

engineering [90] alone or in combination [91].

Biphasic calcium phosphate (BCP), which is made up of

varying concentration of HA and b-TCP, possesses con-

trollable biological and chemical properties and has

become preferred choice for promoting bone ingrowth over

other calcium phosphate ceramics [74, 92, 93]. For

example, 3D printed BCP scaffolds dynamically cultured

with rat osteoblasts and BMSCs showed increased

osteoinduction, ALP activity and mineralization [94]. Like

metals, ceramics too lacks degradability in a biological

environment, and their limited processability [95, 96] can

become a hurdle in tissue engineering.

Polymers are widely used in biomaterial applications

worldwide. For bone tissue engineering natural polymers

such as collagens, glycosaminoglycans(GAG), starch,

chitin, and chitosan are used [74] which possess good

biocompatibility but have poor mechanical strength [74].

Natural polymers are biocompatible which advantageous

for cellular adhesion. In some cases, these polymers may

contain pathogenic impurities which can exhibit immuno-

genicity. Other disadvantages include less control over

their mechanical properties, biodegradability, batch-to-

batch variability and limited supply can affect the cost

efficacy [74].

Collagen is most accepted scaffold among all due to its

biocompatibility and availability. Type I collagen which

constitutes [90% of the organic mass of the bone [97]

promotes proliferation and differentiation of human MSCs

in to the osteoblasts in vitro and osteogenesis in vivo

[97, 98]. The composite scaffolds of collagen-apatite [13],

BSP-collagen composite scaffolds [99] are known to sup-

port bone repair. Collagen in combination with ceramics

like HA, silk fibroin-HA, GAG exhibits good biocompati-

bility and bone regeneration properties [74]. A natural

polymer chitosan is biocompatible, biodegradable, hydro-

philic [100] and stimulate the differentiation of osteopro-

genitor cells [101]. It is observed that chitosan-gelatin

scaffold, chitosan-gelatin-nano silica nanocomposite scaf-

folds showed improved bioactivity and cellular behavior

[102] as compared to control chitosan. Interconnected

porosity and mechanical strength of chitosan scaffolds can

be improved by reinforcement with additives like forsterite

(FS) nanopowder without altering its biocompatibility [95].

Combinations of natural and synthetic polymers like

corn starch with functionalized polycaprolactone are

widely used in preparation of composite scaffolds for bone

tissue engineering [17]. These biodegradable scaffolds not

only promote osteogenic differentiation [103] but also

shows adequate mechanical properties with highly inter-

connected pores and porosity [17]. Natural polymers like

Bacterial cellulose derived from Acetobacter xylinum

(ATCC 53582) [104], Carboxymethyl cellulose (CMC)

incorporated nHA-chitosan (nHA-chitosan-CMC) [105]

composite, 1-Ethyl-3-[3-dimethylaminopropyl] carbodi-

imide hydrochloride (EDC) treated gelatin scaffolds [106]

and Modified cellulose-poly (vinyl alcohol) (PVA) [107]

are some of the promising scaffold for bone tissue

regeneration.

Unlike natural polymers, synthetic polymers have

advantage of reproducibility, large scale production with

controlled properties of strength, degradation rate and

microstructure. Poly (a-hydroxy acids), including poly(-

galactic acid) (PGA), poly(lactic acid) (PLA), and their

copolymer PLGA, are the most popular and widely used

synthetic polymeric materials in bone tissue engineering.

When degraded, PGA, PLA [108] and PLGA [99] secre-

tions are nontoxic, natural metabolites, and are eventually

eliminated from the body in the form of carbon dioxide and

water. The 3D printed PGA-PLA scaffolds found to be

biocompatible with BMSCs [109]. Also composites viz.

PCL-CaCO3 [110], HA-gelatin [111], silk-HA [112], PLA-

HA [113] and triphasic HA-collagen-PCL [114] have been

used for bone regeneration applications.

A wide range of PLLA based composites like PLLA-

HA, PLLA-gel, PLLA-gel-HA, PLLA-apatite have been

studied by various groups worldwide. Composite polymers

prepared using combination of PLLA with various other

materials increased its suitability for bone regeneration

compared to the plain PLLA scaffolds [100]. Formation of

new bone trabeculae with complete repair of bone was seen

in nano-composites scaffold like PLLA-HA [115] or

PLLA-Gel-HA with negligible complement activation

[116]. The poly-D, L-lactic acid (PDLLA) materials in

combination with additives like nHA, polypyrrole-alginate

(PPy-Alg), chitosan have demonstrated good cytocompat-

ibility, hydrophilicity, bioavailability and compressive

strength [117], along with mineralization and osteogenesity

[118]. PLGA-HA composite foams demonstrated compar-

atively higher density, compressive modulus and com-

pressive yield strength [119]. PCL alone [26] or in

combination with other polymers like PLGA-HAcomposite

[99], TCP, nHA [120] have been observed to increase

porosity, tensile strength and cellular activities than rest of

the scaffolds [121]. The porous PCL-HA-CNTs (Carbon

Nano Tubes) composites prepared by 3D printing with

comparable compressive strength of trabecular bone

revealed HA bioactivity, cell adhesion and spreading

properties seemly to regenerate bone [122]. Magnetic

nanofibrous PCL scaffolds prepared by incorporating
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magnetic nanoparticles (MNPs) (PCL-MNPs). These PCL-

MNPs showed apatite formation with simulated body fluid

in vitro. Osteoblasts were adhered and penetrated in to

PCL-MNPs and expressed osteogenic genes as compared

to pure PCL. Also in vivo there were bone regeneration in

segmental bone defects and neo-vessel formation [123].

PLA, PLA-HA and PLA-HA-GO scaffolds have showed

osteoblast growth and proliferation on their surface [124].

Another poly (3-hydroxybutyrate) (PHB) based nanofi-

brous scaffolds namely PHB, PHB-gelatin, PHB-gelatin-

nHA and PHB-gelatin have demonstrated similar results

along with higher level of ALP activity and matrix bio-

mineralization in presence of MSCs [117]. The biomorphic

scaffolds like demineralized bone matrixes, calcined ani-

mal bone and decellularized ECMs derived from various

tissues are known to promote differentiation of ASCs,

MSCs, ESCs, iPSCs in to the osteoblasts and supported

bone regeneration [125, 126].

5 Carbon materials and their use in bone tissue
engineering

Due to the similar dimensions, carbon nano-materials are

considered to be physical analogue of ECM components

like collagen fibers [127]. Various forms of carbon mate-

rials or their composites like single-walled carbon nan-

otubes (SWCNTs), multi-walled carbon nanotubes

(MWCNTs), and grapheme oxide (GO) have been inves-

tigated for their efficacy in tissue engineering in last couple

of years. The nHA-SWCNT scaffold in chitosan enhanced

the mechanical properties suitable for bone tissue engi-

neering. These scaffolds are found to have osteoblast

adhesion and proliferation [128], biocompatible and non-

toxic cellular compatibility properties [129].

The SWCNT networks and rGO are chemically similar

in nature, but differ by topographical features, with rGO

exhibiting higher biocompatibility than the SWCNT [130].

In other hand rough, porous HA-graphene nanosheet (GN)

composites contributes to increased fracture properties of

HA based scaffolds with post mineralization apatite for-

mation in vitro [127].

6 Surface modification of scaffolds

Altering the physicochemical surface properties can

change biocompatibility, influence cell adhesion and

growth; can improve wear resistance and corrosion resis-

tance properties of material to be used as biomaterial. The

surface modification can be achieved by various methods

(Table 3) such as coating by self-assembled film/elec-

trolyte multilayers, surface gradient, surface activation, and

surface chemical reaction. Stainless steel screws when

coated with bisphosphonate increased new bone formation

around implants [131]. Similarly Co-Cr alloy coated with

HA showed superior osteogenesis and integration than

uncoated alloy [132].

Osteoblasts were able to adhere and proliferate on

composites of b-TCP-HA scaffolds coated with alginate

[71]. The uniform Ca-P-polydopamine composite nano-

layer on b-TCP bio-ceramics results in improved surface

roughness and hydrophilicity of b-TCP bio-ceramics.

These composites when seeded with hBMSCs showed cell

attachment, proliferation and alkaline phosphatase activity

and expression of bone related genes (ALP, OCN, COL1

and Runx2) [133]. The interconnected porous b-TCP
scaffolds improved by ZnO showed good mechanical

properties like compressive strength, stiffness, fracture

toughness and micro hardness. These scaffolds showed

bioactivity, biodegradability in vitro and cell attachment,

proliferation [134]. Porous 45S5 Bioglass� based scaffolds

fabricated and coated with poly (3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV) revealed higher porosity with

increased interconnected pore structure and high mechan-

ical properties [70] hence ideal candidate for bone tissue

engineering (Tables 4, 5).

The corn starch-ethylene-vinyl alcohol (50/50 wt %)

based scaffolds when coated with Ca-P showed compres-

sive modulus of 224.6 and compressive strength of 24

without affecting normal cellular activity, expression of

osteopontin, collagen type I and alkaline phosphatase

activity (ALP) [135]. PDLLA foams and PDLLA foams

coated with Bioglass� particles showed complete covering

with HA in 28 days of incubation in SBF. Osteoblasts were

attached and spread on both PDLLA uncoated and coated

foams [136]. While in another in vitro study with SBF, the

HA formation was slower in uncoated composites than

coated composites of PDLLA [108]. The 3D printed

polydopamine coated PLA composite showed cell adhe-

sion, cell cycle progression, increased ALP activity,

osteocalcin on culturing with hADSCs [137]. Dextran

coated polyvinyl formal (PVF) sponges with water holding

capacity showed more adhesion, proliferation, and differ-

entiation of BMSCs in vitro along with increased DNA

content, ALP activity, osteocalcin content, and calcium

deposition [138].

7 Bioreactors for bone tissue engineering

A bioreactor is a culture system to proliferate the cells

through dynamic culture and restrained environment [139].

The limitation of nutrient transfer in the 3D tissue engi-

neering scaffolds can be overcome by continuously mixing

media and by convectively transporting nutrients to cells
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through bioreactor [140]. Various studies revealed poten-

tial role of bioreactors in the cell seeding [141], cell pro-

liferation [142] and differentiation of MSCs in to

osteoblasts [143] with mineralization and calcium deposi-

tion [144]. The umbilical cord blood endothelial progenitor

cells and hBMSCs seeded with PCL-TCP scaffolds

dynamically cultured into biaxial bioreactor showed min-

eralization as well as calcium deposition and subcutaneous

implantation in to NOD/SCID mice showed ectopic bone

formation as compared to static culture [145].

Among different bioreactors, for example, spinner

flasks, rotating wall systems, and a perfusion system

(Fig. 3), the latter has potential applications in bone tissue

engineering [139]. Perfusion bioreactors increase mass

transfer, removes waste and seed scaffolds dynamically by

controlled distribution of cells compared to static culture

Table 3 Surface modification of scaffolds for bone tissue engineering

Surface modified material Coated by

material

Study outcomes References

Stainless steel screws Bisphosphonate New bone formation [131]

Co-Cr alloy HA Osteogenesis; implant integration [132]

b-TCP-HA scaffolds Alginate Osteoblasts adhesion, proliferation [71]

b-TCP scaffolds Ca-P-

polydopamine

Cell attachment, proliferation and mineralization [133]

b-TCP scaffolds ZnO Cell attachment, proliferation [134]

45S5 Bioglass� based scaffolds PHBV Improved porosity, mechanical properties [70]

corn starch-ethylene-vinyl alcohol based

scaffolds

Ca-P Normal cellular activity, osteogenic expression [135]

PDLLA foams Bioglass�
particles

Osteoblasts adhesion, proliferation [136]

PLA composite Polydopamine Normal cellular activity, osteogenic expression [137]

PVF sponges Dextran Cell attachment, proliferation, osteogenic expression calcium

deposition

[138]

Table 4 Growth factors for bone tissue engineering

Growth factors Tissue repair References

BMPs Osteoblastic differentiation; in vivo bone formation [18, 50–54]

FGFs Mineralization; in vivo bone regeneration [44, 55–57]

PDGFs Stimulate VEGF secretion; osteogenic lineage differentiation; in vivo bone regeneration [45, 58–62]

VEGFs Osteogenic and angiogenic potential; bone formation [47, 63–66]

IGFs Osteogenic differentiation; mineralization [46, 59, 67, 68]

Table 5 Bioreactor systems for bone tissue engineering

Sl.

no.

Bioreactor systems Culturing of under bioreactor Aftermaths References

1 Biaxial bioreactor Umbilical cord blood endothelial progenitor cells &

hBMSCs ? PCL-TCP

Mineralization, ectopic bone

formation

[145]

2 Perfusion bioreactors hBMSCs ? collagen/silk In vitro bone formation [147]

3 Flow Perfusion

bioreactors

Goat bone marrow stromal cells seeded with biphasic

calcium phosphate

In vivo bone formation [148]

4 Multiplate Xpansion

bioreactor

Human periosteum derived stem cells In vivo bone formation [152]

5 Hollow fibre bioreactors hBMSCs ? semipermeable polyethersulphone Osteoblastic differentiation of

hBMSCs

[153]
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[146].For example, the study with hBMSCs cultured on

collagen/silk scaffolds in three different environments viz.

static dish, spinner flask and perfusion system showed

highest in vitro bone formation in perfusion system [147].

The goat bone marrow stromal cells seeded with biphasic

calcium phosphate cultured in perfusion system prolifer-

ated homogeneously on scaffolds and after implantation in

to nude mice showed bone formation [148]. In comparison

with static culture, hBMSCs cultured on the PLGA-PCL

scaffolds in perfusion systems, when implanted into

femoral condyle defects in rat, showed rapid bone regen-

eration [149].

Rat MSCs seeded on PCL scaffolds cultured under engi-

neered flow perfusion bioreactor demonstrated cell adhesive,

remodeling, structural proteins as well as HA [150]. The

hMSCs seeded with Poly (L-lactide-co-caprolactone) cultured

in the dynamic conditions showed calcification, expression of

osteogenic genes and induction of osteogenic lineage [151].

Humanperiosteumderived stemcells cultured in themultiplate

Xpansion bioreactor showed proliferation of cells and in vivo

bone formation [152]. The hBMSCs separated by semiper-

meable polyethersulphone cultured in hollow fibre bioreactors

maintained their immunophenotype and osteoblastic differen-

tiation capacity [153]. Flow perfusion culture of rat MSCs

seededonPLAscaffolds increased thegrowth andproliferation

of MSCs with higher ALP Activity [154].

8 Bone tissue engineering and future perspectives

From the first attempt of bone regeneration by Urist [155],

the field of bone tissue engineering has grown rapidly to

develop bone substitute which is more close to natural bone

or to regenerate bone using different approaches. Advanced

studies in bone tissue engineering in recent past both in vitro

and in vivo have explained the potential of variety of cells to

differentiate into osteoblasts and the supporting role of

growth factors and/or biomaterials. Most of these studies

have revealed the biocompatibility, biodegradability,

osteoinductivity, osteoconductivity, osteogenicity and/or

physico-mechanical properties. Some in vivo studies showed

repair of bone defects or bone regeneration. However,

complete replacement of defective bone using biomaterials

is still not achieved. Creation of functional bone in labora-

tory condition using cell therapy is still a challenge, although

different types of stem cells have shown osteogenic lineage

differentiation. Because of many functional problems like

mechanical strength, host immune integration, vasculariza-

tion, etc. in development of bone or bone substitute that can

mimic natural bone, clinical trials in human are still at bay.

So far, researchers have shown successful use of biomate-

rials or scaffolds growth factors, and cells for bone tissue

engineering, alone or in combination. However, when it

comes to clinical application of these materials as bone

substitute, it is difficult to obtain approval from regulatory

bodies for clinical trials. The future direction should focus

on establishing an ethical threshold that is effective and

obtainable for future researchers to partake in more high-

level studies within the clinical setting. Another reason for

only few approved bone substitute for clinical trials, is the

difficulties in performing pre-clinical large animal trials.

High research and development costs, in combination with

the current regulatory environment, present a challenge to

high-quality evidence-based study.

Biomaterials for orthopedic implants have great finan-

cial impact all over the world. In U.S. alone it was

Fig. 3 Schematic diagram of

bioreactors: A spinner flask

bioreactor, B rotating

bioreactor, C perfusion

bioreactor. Cells, growth factors

filled 3D constructs cultured in

bioreactors can be used to

regenerate bone tissues
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predicted that the biomaterials for orthopedic implants will

costs as much as $3.5 billion by the end of 2017 [156].

Patient specific manufacturing of bone substitute also adds

in to the cost of therapy. Hence, further efforts are required

to develop cost effective, bio-mimicking constructs which

can replace defective bone in reality. Such bone tissue

engineering constructs will surely bring fruitful treatments

in curing bone defects via bone replacement or by regen-

eration. As research at the cellular level continues to

expand, the opportunity for growth is limitless, with stem

cell-based applications and tissue engineering potentially

setting the stage for how more effective and cheap bone

substitute/regeneration treatments are carried out both

today and in the future.
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