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4.1 Introduction

Loss or the dysfunction of bone tissue may occur
due to trauma, injury, disease, or aging [1].
Currently there are excessive amount of materials
to be applied to bone regeneration [2]. In turn, the
autograft-, allograft-, or xenograft-based bone
regeneration techniques have their disadvantages
such as the need for extra surgical procedures,
infection, chronic pain, or tissue rejection, which
in turn has increased the importance of tissue
engineering and regenerative medicine [3]. The
main goal of tissue engineering is to assemble
isolated functional cells and biodegradable tissue
scaffolds made from bioengineered materials
with the aim of regenerating diseased or damaged
tissue. Many scientists from this multidisci-
plinary field have focused on designing and gen-
erating appropriate scaffolds for various tissues,
by primarily overcoming cell-dependent prob-
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lems in addition to scrutinizing tissue engineer-
ing structures in vitro and in vivo [4].

This chapter aims at describing the impor-
tance of renewable materials which have great
potential for use in bone tissue engineering. In
this context, the chapter offers new approaches
in the improvement of polymeric composite

matrices with the aim of obtaining 3D
tissue-engineered scaffolds from renewable
biomaterials.

4.2 Biology of Bone Tissue:

Structure and Function

Bone tissues are responsible for many crucial
assignments, the most notable ones being struc-
tural support and protection against external
forces in the vertebrates. Its ability to self-repair
and rebuild by promoting mechanical require-
ments makes this tissue very unique in a struc-
tural sense. However, healthy bone functions can
be influenced by many different pathological sit-
uations or diseases. On the other hand, the bone
tissue has been established to have limited regen-
erative capacities depending on patient age, ana-
tomical site, and fracture size since it is hard for
the body to repair huge gaps by itself [5, 6].
Critical-sized fractures (~5 mm) do not have the
ability to heal on their own and need surgical pro-
cedures to ensure the appropriate restoration.
Typical fractures seldom give rise to the forma-
tion of a hole of critical size, whereas some trau-
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matic defects, cancer, infections of the bone, or
age-related degenerations result in areas where
the bone cannot renew by itself. Thus, bone tissue
transplantation is the second most performed
procedure after blood, with over 100 million
operations a year, where patients only in the USA
pay approximately $800 billion for treating bone
diseases annually [6].

Bone, an enduring and extremely vascular-
ized tissue, can keep reconstructing itself
throughout a life span. Within its dynamics are
different mechanical, biological, and chemical
functions which act in controlled harmony.
These include structural support, protection and
regulation and storage of restorative cells and
minerals, in addition to protection and regulation
of Ca and P ions by arrangement of crucial elec-
trolyte concentrations in the blood [7]. It actively
contributes to the generation of various types of
blood cells (known as hematopoiesis) by regulat-
ing homeostasis [8]. The bone structure has a
complementary role in mobility, through the
skeletal structure which has sufficient load-bear-
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ing capability and behaves as a protective cover
for the sensitive interior organs of the body [9].
For a better understanding of the mechanical
features of a compact bone tissue, it is significant
in understanding the hierarchical constructional
behavior they possess: (1) cancellous and corti-
cal bone; (2) the microstructure (from 10 to
500 pm); Haversian systems, osteons, single tra-
beculae; (3) the sub-microstructure (1-10 pm);
lamellae; (4) the nanostructure (from a few hun-
dred nanometers to 1 micron): molecular struc-
ture of constituent elements like fibrillar collagen
and embedded mineral; and (5) the sub-nano-
structure (less than a few nanometers): molecu-
lar structure of component elements such as
minerals, collagen, and non-collagenous organic
proteins (Fig. 4.1). Thus, the components of
bone material are both heterogeneous and aniso-
tropic in nature [10].

The bone ultrastructure is composed of colla-
gen and minerals such as tricalcium phosphate,
and hydroxyapatite (HA), Ca,;,(PO,)s(OH),.
Synthetic HA is one of the most preferred bioc-
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Fig.4.1 Anatomy of bone tissue: The ultrastructure of compact bone [16]
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eramic structures used in the construction of bone
substitutes. When examined in detail, bone mac-
romolecules are formed from collagen type I
(90%) and over 200 different types of non-
collagenous matrix proteins (i.e., osteocalcin,
osteonectin, glycoproteins, proteoglycans, and
sialoprotein) [11, 12]. These non-collagenous
matrix proteins induce intermediate extracellular
signals which tend to regulate the homeostasis of
various cell types such as osteoblast, osteocyte,
and osteoclast. The other crucial section of bone
is the mineralized inorganic components (com-
posed of 4-nm-thick plate-like carbonated apatite
mineralities). Moreover, the compact structure
composed of collagen and HA gives this tissue a
unique compressive strength and high fracture
toughness [12].

HA is a bioactive, biocompatible, osteocon-
ductive, nontoxic, noninflammatory, and non-
immunogenic ceramic for bone tissue engineering
and one of the most widely used biomaterials due
to its resemblance to the inorganic constituent of
the vertebrae, bone and its ability to encourage
cell-scaffold adaptation [13]. Hydroxyapatite
nanoparticles (HAp) in collagen fibers reach for
supporting assistants by activating the production
of alkaline phosphatase in bone, resulting in its
overwhelming endurance [14]. Nanoscale HAp
(50 x 25 x 3 nm?) is crucial for appropriate gen-
eration of osteocytes in the bone matrix. Naturally
produced HAp has a Ca:P ratio of 1.67 which
needs to be imitated in the production of HAp to
acquire the necessary biological response, solu-
bility, and mechanical sensitivity [15].

Autogenous bone implants are widely selected
in bone replacement. Nevertheless, this treatment
technique is limited due to insufficiency of
donors, infection, veto of implant, etc., especially
in wide fractures [17]. Various studies have been
conducted since the discovery of the differentia-
tion potential of human adipose-derived mesen-
chymal stem cells (hAMSCs) into osteogenic
lineage, and hence these cells have been consid-
ered as an excellent source for bone tissue engi-
neering applications. Even though first practices
included the direct implementation of stem cells
into fracture locations, nowadays scaffolds com-
bined with stem cells, particularly MScs, are

applied, so that they promote cell colonization,
immigration, growth, and differentiation [18].

An optimal scaffold for bone tissue engineer-
ing practices should permit or enhance cell via-
bility, attachment, proliferation, homing,
osteogenic differentiation, vascularization, host
integration, and high load-bearing capacity
(Fig. 4.2). In addition, it should be simple to
apply and susceptible to minimally invasive
implant treatment. It should be reproducible on
an industrial scale and at the same time be sterile.
Eventually, all its features should be practical and
meet the demands [19].

4.3 An Overview of Biomaterials

in Tissue Engineering

The field of tissue engineering involves chemis-
try, biology, medicine, and engineering
approaches, with the aim of repairing and/or
replacing injured tissues and organs with the aid
of bioartificial substitutes using biopolymers,
cells, and biologically active agents such as
growth factors and cytokines (Fig. 4.3). This is a
thriving interdisciplinary field presenting new
opportunities to scientists [7, 20]. The extracel-
lular matrix comprises a complex combination
of structural and functional proteins, glycopro-
teins and proteoglycans that are organized in a
unique tissue-specific three-dimensional struc-
ture. They play a vital role in morphogenesis,
composition, and function of tissues as well as
organs [21].

Providing a suitable microenvironment, that is
to say, fabricating scaffolds or decellularized
extracellular matrices for cell growth, migration,
and proliferation is crucial in tissue engineering
(Fig. 4.4). This is due to the fact that scaffolds
which include growth factors or other signaling
molecules serve as a so-called niche for cells [7,
23, 24]. In essence, big progress in the fabrication
of novel three-dimensional (3D) tissue-
engineered scaffolds, using biodegradable poly-
mers for the purpose of therapy, has been
achieved. An extensive number of attempts at
developing new scaffold technologies using both
polymers and cells, including stem and/or
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Fig.4.2 General overview of scaffold construction for bone regeneration [19]

somatic cells, isolated from various tissues have
been made. Polymers used in the fabrication of
scaffolds in regenerative medicine can usually be
categorized as synthetic or natural, where the
commonly used polysaccharides (starch, alginate,
chitosan, hyaluronic acid derivatives, etc.) and
proteins (collagen, fibrin gels, silk, keratin, etc.)
are examples for natural polymers (Table 4.1).
On the other hand, synthetic polymers such as
polylactic acid (PLA), poly(L-lactic acid)
(PLLA),  poly(p,L-lactic-co-glycolic  acid)
(PLGA), polyglycolic acid (PGA), and polycap-
rolactone (PCL), approved by U.S. Food & Drug
Administration (FDA), can be easily processed
and handled in contrast to natural polymers
which is their superiority (Table 4.2) [25]. Major

advances seen in biomaterials technology in
recent years have led to the development of
sophisticated materials [26]. Ideally, functional-
ized biomaterials like ceramics and natural/syn-
thetic biodegradable polymers can be utilized for
the production of 3D scaffolds which tend to sup-
ply not only mechanical support but also
microscale architecture for neo-tissue construc-
tion allowing in vitro and in vivo cell growth,
attachment, migration, and proliferation [24, 27,
28]. These biomaterials are seen to have a wide
range of applications, including replacement of
biological tissues and development of instru-
ments for injury and surgical applications, and
medical diagnosis has led to a revolution in bio-
material science [26].
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Fig. 4.3 The repairing mechanism of femur fractures and common complications that may occur [9]

4.4 Thelmportance of Popular
Renewable Materials

for Regenerative Medicine

The applicability of native materials containing
polysaccharides and proteins in the structure of
hydrogels has been well studied. These materials,
including ECM proteins such as collagen, elastin,
fibrin, keratin, hydroxyapatite, and hyaluronic
acid, show significant bioactivity in biomedical
applications [30].

Bone is a complicated material consisting of
mostly collagen, proteins, with hydroxyapatite
in organic component. Although HA is the
essential inorganic constituent of bone, it does
not have the ability to be applied as bone heal-
ing material alone because of its delicate and
brittle nature. At present, many researchers have

devoted themselves to the development of dura-
ble hybrid biomaterials of hydroxyapatite with
proteins and alternative synthetic polymers [31-
35]. For many years, HA ceramics that can
improve bone mass and formation of the implant
and the bone interface have become quite impor-
tant as bone grafting material, due to their great
mechanical properties, corrosion resistance,
biocompatibility, bioactive properties, and per-
fect osteoconductive features [17, 36, 37]. Using
an enhanced hygienic, nontoxic and in addition
to an environmentally friendly approach, HA
powders have been obtained utilizing bioprod-
ucts such as corals, cuttlefish shells, natural
gypsum, natural calcite, bovine bone, sea
urchin, starfish, and eggshell [38—41]. Chemical
studies have demonstrated that these bio-wastes,
contrary to popular opinion, are rich in calcium
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Fig. 4.4 Different scaffold fabrication techniques in tissue engineering and regenerative medicine [22]

in the form of carbonates and oxides. Eggshells
are one of the best examples for bio-waste.
Millions of tons of eggshells are produced by
people as bio-waste on daily basis throughout
the world. The eggshell constitutes ~11% of the
whole weight of an egg and consisted of cal-
cium carbonate (~94%), calcium phosphate
(~1%), and organic matter (~4%) [42]. In addi-
tion, eggshells are inexpensive, abundant in
nature, biocompatible, yet not osteoconductive.
Therefore, transforming these powders in HA
before implantation is favorable [43].

Keratins are structural proteins that display
high mechanical resistance owing to numerous
intra- and intermolecular disulfide bonds contain-
ing a fair amount of cysteine [44]. Keratin is
mostly consisting of 3-sheets, a small number of
a-helices, and loops [45, 46]. Waste keratins are
generally obtained from human hair (Fig. 4.5),
animal nails, horns, hoofs, wool, and feathers
[47]. Additionally, about 300,000 tons of hair is
wasted in hair salons, hospitals, and similar
places each year [48]. Keratin obtained from

renewable sources is highly biocompatible, pos-
sesses cellular interaction sites, and exhibits
enhanced biodegradability. In contrast to alterna-
tive natural materials, human hair keratins have
different benefits like being abundant, bioactive,
having a powerful capacity to self-assemble
inside hydrogels, and being an exact source of
autologous proteins [49, 50]. Likewise, in addi-
tion to enhancing mechanical properties, this
autologous protein has some signaling patterns
like Leucine-Aspartic Acid-Valine (LDV) and
Glutamic Acid-Aspartic Acid-Serine (EDS) pep-
tide regions which increase the adhesion charac-
teristics of cells [47, 51]. Nonetheless, new
improvements have been made to obtain keratin
easily from human hair which has resulted in
good tissue engineering applications [52].
Collagen is the most widespread protein in
the body and provides endurance and construc-
tional stability to tissues containing skin, blood
vessels, tendons, cartilage, and bone [27]. The
characterizing property of the collagen is its
molecular form that is defined by a unique
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Table 4.2 Well-known synthetic polymers used in tissue engineering and regenerative medicine [29]

Polymer
Biocompatibility Disadvantage Biodegradability Application
Poly(lactic acid) Minimal cytotoxicity, Local inflammation, | Bulk, 24 months Skin, cartilage,
mild foreign body random chain bone ligaments,
reaction, minimal hydrolysis tendons, vessels,
inflammation nerves, bladder,
liver
Poly(glycolic acid) | Minimal cytotoxicity, Local inflammation, | Bulk, 6-12 months | Skin, cartilage,
mild foreign body random chain bone ligaments,
reaction, minimal hydrolysis tendons, vessels
inflammation nerves, bladder,
liver
Poly(lactic-co- Minimal cytotoxicity, Local inflammation, | Bulk, 1-6 months Skin, cartilage,
glycolic acid) mild foreign body random chain bone ligaments,
reaction, minimal hydrolysis tendons, vessels,
inflammation nerves, bladder,
liver
Poly(caprolactone) | Minimal cytotoxicity, Hydrophobic Bulk, 3 years Skin, cartilage,
mild foreign body bone ligaments,
reaction, minimal tendons, vessels,
inflammation nerves
Poly(ethylene Mild foreign body Complex Bulk, Skin, cartilage,
oxide) reaction, no biodegradability 1 month-5 years bone, muscles
inflammation
Polyanhydrides Minimal foreign body Limited mechanical | Surface erosion, Bone
reaction, minimal property controllable
inflammation, minimal
cytotoxicity
Poly(propylene Mild foreign body ‘Weak mechanical Surface erosion, Bone
fumarate) reaction, minimal property 1 week—16 months
inflammation
Poly(orthoester)s Mild inflammation, ‘Weak mechanical Bulk ~ several Ear, bone, cartilage
mild foreign body property months
reaction
Polyphosphazene Minimal foreign body Wide molecular Surface erosion, Skin, cartilage,
reaction, minimal weight distribution 1 week-3 years bone, nerves,
inflammation ligaments

conformation which is a three a-polypeptide
chain of one or more spaces formed in a triple-
helical structure of [Gly—X-Y], arrangement in
one of the main sorts of constructional ECM
proteins [30, 53]. This design comprises a
supercoiled triple helix that consists of three
left-handed polyproline-like chains twisted
together into a right-handed triple-helix.
Hydroxyapatite and collagen, the most impor-
tant structural protein present in bone, are two
main constituents of bone. They compose 89%
of the organic matrix and 32% of the volumet-
ric constituent of bone. Therefore, it is a special
protein that promises to produce bone from cul-
tured cells [54]. Collagen is one of the most

frequently used materials due to its superior
biocompatibility, biodegradability, weak immu-
nogenicity, and cell-adhesive properties in tis-
sue engineering [55, 56]. Although collagen
can be produced from different organisms, gen-
erally, bovine skin, tendon, and porcine skin-
derived collagens for tissue engineering
practices are preferred. Yet, collagen obtained
from bovine sources includes the risk of infec-
tion with illnesses such as bovine sponge-like
encephalopathy. Additionally, particularly por-
cine-derived mammalian collagens are refused
for religious reasons [57]. Marine living
creatures are also a native origin of collagen
and, probably, are more secure source than
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Fig. 4.5 The microscopic structure of hair [52]

mammals. Recent studies focus primarily on
the extraction and characterization of collagen
from various fish types like salmon, shark or
deep-sea redfish and marine sponges. Jellyfish,
which is also of marine origin, is another alter-
native charming source of collagen [58-61].
The worldwide growth of the jellyfish popula-
tion has caused great concern in the ecological
environment. Their potential for utilization in
tissue engineering, in addition to the food
industry and medicine, we believe, will assist in
the preservation of the jellyfish population.
Jellyfish has more than 60% collagen, thus the
potential to become a perfect source for in bio-
medical applications [62-64].

Fabrication of 3D Scaffolds
from Keratin-Collagen-nHA
for Bone Tissue Engineering

4.5

Keratin is insoluble in several prevalent sol-
vents like dilute acids, alkalines, water, and
organic solvents. Soluble hair keratins can
directly be obtained from human hair utilizing
reducing assistant solutions in alkaline or
acidic media (Fig. 4.6) [49, 50]. A common
way of obtaining keratin includes the utiliza-
tion of reducing assistants because the natural
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structure is difficult to extract, owing to its
extremely cross-linked status with disulfide
bonds [65-67].

Hydroxyapatite is usually obtained through
chemical methods by way of calcium hydroxide
or nitrate as pioneers [69]. Recently the synthesis
of nanostructures using native resources or waste
like eggshell, fish scale, or bovine bone has
become an outstanding issue. Eggshell, one of
the main residual outputs of the food industry, is
a great resource of calcium carbonate (95%)
enabling its use in the synthesis of HA. There are
many different studies related to the synthesis of
HA utilizing eggshells [70, 71]. Nanostructured
HA has been obtained via various techniques,
like homogeneous precipitation, hydrothermal
synthesis, combination of electrospinning and
thermal treatment, and application of fibrous
B-Ca(POs), crystalline as pioneer [72-74].
Derkus et al. [31] have demonstrated a signifi-
cantly novel method, the sonochemical synthesis
technique, which is a more applicable, homoge-
nous, and cheap method for the synthesis of
nanostructured HA (nHA) utilizing various
resources. This technique was implemented in
the synthesis of nHA using eggshells as the
resource (Fig. 4.7), for the design and application
of an aptasensor, which has emerged as an inter-
esting application in literature [31].
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Fig. 4.6 Keratin extraction process from human hair [68]
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Collagen-originated biomaterials are actually
based on three basic techniques and sub-
techniques of these. The first one is to decellular-
ize the collagen matrix protecting the primary
tissue form and ECM architecture, whereas the
second method is based on extraction,
purification, and polymerization of collagen and
its various constituents in order to create a handy
scaffold and finally to obtain a collagen solution
from different biomolecules. All methods could
be applied to several cross-linking techniques
and protocols that can be applicable to a large
arena of tissue resources [75, 76].

The collagen matrix or ECM could be pro-
duced through decellularization methods. Gilbert
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et al. [76] have discussed the three ways for tissue
decellularization: physical, chemical, and enzy-
matic. Physical techniques include snap freezing,
which disturbs cells by forming ice crystals, lead-
ing to high pressure that explodes cells and in
turn agitates and stimulates cell lysis. The
chemical processes of decellularization involve
multiple reagents that remove the cellular ingre-
dient of ECM. These materials range from acids
to alkaline tests, which are as good as chelating
agents like EDTA, ionic or non-ionic detergents
and solutions of excessive osmolarity. Enzymatic
therapies like trypsin, which particularly sepa-
rates proteins and nucleases, evacuating DNA
and RNA, are usually utilized to fabricate decel-
lularized scaffolds as well. Nevertheless, all of
these methods are unable to fabricate an ECM
exactly free of cellular waste on their own; there-
fore a combination of different techniques is fre-
quently necessary for this purpose [75].

The alternative source for collagen-originated
biomaterials are actually marine resources as pre-
viously defined. Various ways were applied and
enhanced to obtain collagen from jellyfish so as
to be able to fabricate collagen-originated bioma-
terials (Fig. 4.8). Advanced isolation techniques
were asserted on three major bases of solubility:
in acid solutions, in inactive salt solutions, and in

Rhizostoma pulmo

JF Sheets

Process 2: JF pieces are treated in Ethanol
(99.9%) for 4-6 hours. Then the pieces are
allowed to dry at RT for ovemight. Collagen
sheets are freezed, and lyophilized. They
have to be stored at-86 C if they aren’tused.

Raw Jellyfish (JF)
Process 1: JF is washed
several times in cold pure
water

Scaffold Fabrication

Process 9: The pepsin-soluble
JF collagen is lyophized
overnight to fabricate 3D spongy
scaffold.

Lyophilization
Process 8: The pepsin-soluble

JF collagen is molded and freezed
at-80 C for overnight.

minutes at 4 C

Fig.4.8 Process steps of jellyfish collagen isolation [31]

Centrifuge for Cleaning
Process 7: The soluble is
centrifuged at 10.000g for 2

proteolytic solutions. Proteolytic extraction
changes collagen molecular architecture by sepa-
rating the terminal telopeptide areas resulting in
the proportional decrease of tropocollagen self-
assembled fibrils. In order to prevent this effect,
endogenous proteases could be inhibited during
acid solubilization. Nevertheless, acid ejection
which utilizes light pepsin solubilization is the
most efficient technique in terms of yield,
although some telopeptides do separate or are
partly denatured [77].

There are a limited number of studies con-
cerning the application of bioengineered kera-
tin, jellyfish collagen, and nHA scaffolds to
bone tissue engineering. Arslan et al. [17] fabri-
cated 3D tissue-engineered osteoinductive bio-
composite scaffolds utilizing human hair
keratin, jellyfish collagen, and eggshell-derived
nanostructured spherical HA (Fig. 4.9). Two dif-
ferent osteoinductive scaffolds, collagen-nHA
and collagen-keratin-nHA, were produced uti-
lizing the freeze-drying method. hAMSCs were
then seeded into these scaffolds and the early
osteogenic differentiation markers were evalu-
ated. The collagen-keratin-nHA osteoinductive
biocomposite scaffolds were observed to have
the potential of being used in bone tissue
engineering.

Atelocollagen

Process 4: JF sheets (approx.
1 gram) are homogenized in
0.5M 100 ml acetic acid for 2
minutes at 4 C. Then 100 mg
Pepsin (600-1200 U/mg) is
added into this solution and the
suspension is stirred for 3 days
at4 C.

Viscous
Liquid

Pre-treatment

Process 3: To remove non-
collagenous substances, 1

gram of sample is treated with

0.1M NaOH at 4 C for 2 days =
(the solution is changed once

a day). Then, samples are

washed in pure water until the
neutral pH is achieved.

Collagen sheets
in 0.1M NaOH

Dialysis

Process 6: JF solution is dialysed
against 0.02M Na:HPO, (pH: 8.8)
for3days at4 C

Centrifuge for Cleaning
Process 5: The solution is
centrifuged at 3400g for 5
min. at 4 C
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Fig. 4.9 Keratin-
collagen-nHA 3D
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4.6 Conclusions

The field of tissue engineering and, in particu-
lar, bone tissue engineering has been studied
extensively. Polymeric products, in combination
with mineral based nanostructures, have been
used by various research groups in order to trig-
ger the osteogenic differentiation. Recently,
natural resources have become popular due to
their cost efficiency, nontoxic nature and easy-
to-produce materials suitable for bone tissue
engineering. Different research groups have
focused on the synthesis of hydroxyapatite bio-

ceramics, which constitute the inorganic phase
of bone, using various waste material like mus-
sel shells, flue gas desulfurization gypsum, fish
bones, and eggshells. Likely, some research
groups have been focused on the isolation of
collagen with low immunogenicity and high
purity from different kind of species such as jel-
lyfish instead of the traditionally used skin or
rodent tail. In our opinion, adaptation to this
approach is like “killing two birds with one
stone.” Firstly, waste is evaluated as a renewable
material resource of unlimited volume and
chemical diversity. Secondly, it will have a posi-
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tive effect on waste accumulation in the envi-
ronment. Provided that biomaterials obtained
from waste resources have low immunogenic
response and toxicity, this technology can be
expected to become available for clinical use in
the next few years.
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